Summiting HFK(K):

a view from the top and next-to-top gradings

Gany D. Dunkerley The University of Georgia GSTS November 30th, 2022

> slides available at: garydunkerley.github.żo

PRELIMINARIES

Throughout, Y is closed, connected, orientable, and of dimension 3. i.e. K= 22 for some orientable surface 2. Let K: S¹ → Y be a null homologous knot. KNOT FLOER HOMOLOGY (ndepredently) (Rasmussen, Ozsváth & Szabó)

i) associate Kary w/ a doubly-pointed Heegaard diagram

ii) create a chain complex freely generated over the intersection points of Lagrangian tori associated with H(K).

iii) equip this chain complex with a bigrading and a differential

iv) resulting homology HFK(K) is a bigraded module

HFK° IS INTRINSICALLY INTERESTING...

[Oz-Sz, Ras;] '03-'04]

assists with computation of HF° HF⁺

[Man - Sar; '21]

has a Floer stable homotopy type

... & RELATES TO OTHER KNOT INVARIANTS

[Oz-Stip-Sz; 17] yields probing homomorphisms into [Dai-Hom-Stoff-Truong; 21] the knot concordance group

etc.

GOALS

- I. Sketch definitions of HF° & HFK°
- I. Discuss gradings in HFK(Y,K)
- III. Sketch definition of SFH
- IV. Top (Alexander) grading determines knot genus (sketch proof)
- V, (Stretch goal) Next-to-top grading encodes monodromy of fibered Knots

Ozsvath & Szabó associate three spaces with 71:

(ĤF)

throw out disks having non-zero intersection number with {z} × Sym^{g-1}(Ig)

(HF∞)

record their intersection numbers with powers of a "formal variable" U.

• Fix base points Z& w in $\Sigma_g \setminus (\alpha \cup \beta)$

Freely generate a Z/276[U,V] - module
 over In Tp

· Build a differential which documents the algebraic intersection of holomorphic disks with

in powers & formal variables U&V.

Two BASEPOINTS?

Can realize K -> Y as union of two Flowlines connecting the index 0 & index 2 critical points of the Morse function defining a tleegaard splitting for Y. These flow lines will intersect the central surface in two points disjoint from the flow lines connecting other critical points by]! - theorem for ODEs. (Existence & Uniqueness)

Example $4_1 \subseteq S^3$

(1.)Take a tubular neighborhood of your knot

The purple curve lives in the of-hendlebody, so it can intersect the B curves.

The green curve lines in the B-hadlebody, so it can intersect the of curves.

A NAÏVE QUESTION Kauffman introduced virtual Knot diagrams, which encode knots in "thickened surfaces."

quantum topology & "surfaces in 4-manifolds" people seen to be interested in these.

Is there a similar algorithm for making doubly-pointed Heegaard diagrams for virtual knots?

IDEA Partition a ring/module/vector space into levels which are respected by the algebraic structure.

EXAMPLE $H^*(M; R)$ is graded by the cocycle dimension; sums of cocycles in the same graded piece remain in that graded piece, the cup product $\alpha^{j} \cup \beta^{k} \in H^{j+k}(M; R)$.

A bigrading on a ring/module/etc. is a pair of gradings.

HFK[°]IS BIGRADED

Endow $\mathbb{Z}/_{27_{k}}[\mathcal{U},V]$ with a bigrading $gr = (gr_{u}, gr_{v})$ defined by $gr(\mathcal{U}) = (-2,0)$ gr(v) = (0,-2)CFK(M) is a $\mathbb{Z}/_{27_{k}}[\mathcal{U},v]$ - module freely generated on points in T_{a} o T_{b} . This complex is relatively graded

(frop. 7.5, "Holomonphic disks & 3-manifold Invariants")

 $gr_{u}(x) - gr_{u}(y) = \mu(\phi) - 2n_{w}(\phi)$ $gr_{v}(x) - gr_{v}(y) = \mu(\phi) - 2n_{z}(\phi)$ the "Maslov index"
of ϕ

GRADINGS & Spin[°] Structures

Theorem [Turaev] Let M be a closed, oriented 3-manifold. Then the collection of Spin^C structures on M is in 1-to-1 correspondence with homology classes of non-zero vector fields on M.

Consequence: an association between surfaces, HFK generators, & Spin^c structures

ALEXANDER GRADING

Given x e In IB, its Alexander grading is defined by $A(x) := \frac{1}{2} (gr_u(x) - gr_v(x))$ Remander: gradings behave like logarithms $A(u^{n}v^{m}x) = \frac{1}{z} \left(gr_{u}(u^{n}v^{m}x) - gr_{v}(u^{n}v^{m}x) \right)$ $= \frac{1}{2} \left(\left[gr_u(u^{n}) + gr_u(v^{m}) + gr_u(x) \right] - \left[gr_v(u^{n}) + gr_v(v^{m}) + gr_v(x) \right] \right)$ **feral:** $gr(u) = (gr_u(u), gr_v(u)) = (-2, 0)$ g(v) = (g(v), g(v)) = (0, -2) $= \frac{1}{2} \left(\left[-2n + 0 + gr_{u}(x) \right] - \left[0 - 2m + gr_{v}(x) \right] \right)$ $= m - n + \frac{1}{2} (gr_u(x) - gr_v(x))$ A(x)

We state the differential explicitly:

The differential sends each object in CFK to another object of the same Alexander grading.

HFK can be decomposed into a direct sum along levels of the Alexader grading.

 $\widehat{HFK}(M,K) \cong \bigoplus_{s=-\infty}^{\infty} \widehat{HFK}(M,K,s)$ portion generated by chains

w/ Alexader grading i

I'd like to sketch the proof of...

Theorem (Oz-Sz, "Holomorphic Disks & genus bounds") Let $K: S^{\pm} \hookrightarrow S^{3}$, then the Seifert genus of K, g(K), is the largest $s \in \mathbb{Z}$ such that $HFK(S^3, K, S) \neq 0$.

Ozsváth & Szabó's original proof uses heavy machinery from contact & symplectic topology as nell as TQFT properties of HF° Theoren [Juhász, '07] We can generalize Os-Sz's theorem to any nullhonologous knot in any rational honology sphere (QHS) using <u>sutured Floer homology</u>.

III. Sutured Floer

A sutured manifold is a pair M~ a compact, oriented 3-manifold w/ boundary

 $\chi \sim a$ set of pairwise disjoint tori T(x)& annuli A(x) in ∂M .

subject to the conditions

i "A(x)'s constituents are algebraically meaningful."

(homologically) Each annulus in A(x) contains a non-trivial closed curve in its interior, called a suture. [Denote the collection of sutures by s(x).]

Example

Let Y closed, oriented, connected. L -> Y a null-homologous link, then if S a Seifert sufface for L, define

 $Y(S) := (Y \setminus int(S \times I), Y)$

 $A(\xi) = \partial S \times I \qquad S(\xi) = \partial S \times \xi^{1/2}$ $T(\xi) = \not P \qquad R(\xi) = S \times \xi^{0,1}$

* CARTOON *

Renark on ii

When $\partial M = \phi$, we said

For sutured case, fix a nowhere vanishing vector field V on JM that agrees w orientations on $R_{\pm}(x)$ & on X agrees w gradient of the height map.

Identify Spin^C stuctures w/ homology classes of vector fields (rel 2) which restrict to V on JM.

* CARTOON *

Decomposition along surfaces

The Y(S) example generalizes who a nice "factorization" procedure for satured manifolds (M, r)

IF SCM a properly embedded, oriented surface satisfying certain conditions, then we can decompose Y along S to get (M', X') W/

$$M' = M \setminus int(S \times I)$$

$$\chi' = (\chi \cap M') \cup N(S'_{+} \cap R_{-}(\chi)) \cup N(S'_{-} \cap R_{+}(\chi))$$

$$R_{+}(\chi') = ((R_{+}(\chi) \cap M') \cup S'_{+}) \setminus I_{n}t(\chi')$$

 $R_{(\delta')} = \langle (R_{(\delta)} \cap M') \cup S'_{(\delta)} \rangle \setminus \operatorname{Int}(\delta')$

Where S'_ / S' are components of JN(S) n M' whose normal vectors point out of / into M'.

Surface admitting a decomposition

(the conditions)

For all components CC SNY one of the following holds:

2 C is a properly embedded non-separatry and in y

c is in a A(g) annulus in & represents the same class on H,(g) as the same represent.

All intersections of S w/ a given iii torus component of & represent the same class in H,(8).

$$\alpha = \{\alpha_{1}, \ldots, \alpha_{n}\}$$
 & $\beta = \{\beta_{1}, \ldots, \beta_{m}\}$

Note we do not require n=m

along components of a x Eo3

All balanced sutured manifolds have sutured diagrams & diagrams for the same manifold are related by generalized Heegaard moves. BALANCED MANIFOLDS / DIAGRAMS

A sutured manifold is balanced if: i. all components of M have boundary $\frac{z_{i}}{Z_{i}} \chi(\overline{R_{+}(\gamma)}) = \chi(\overline{R_{-}(\gamma)})$ iii. each component of JM has a component of $A(\gamma) \implies T(\gamma) = \emptyset$) A suture of Heegaard diagram is balanced if: \dot{z} . $|\pi_{o}(\alpha)| = |\pi_{o}(\beta)|$ The maps induced by inclusion ii. $\pi_{o}(\Sigma) \xrightarrow{\pi_{o}} \pi_{o}(\Sigma \setminus \alpha)$ $\rightarrow \pi_{o}(\Sigma \setminus \beta)$ are surjective.

Y(S) is (strongly) balanced

- 14

Example 2

Y (N(K))

 $A(\gamma) := (\mu, \sqcup - \mu_2) \times I$ ••• $T(\gamma) = \varphi$ $S(\gamma) := \mu, \sqcup - \mu_2$

BALANCED DIAGRAMS

Condition zi. tells us our components of JM shouldn't be ghettoized by ~ & B.

not balanced

balanced

TAUT SUTURED MANIFOLDS

- We say (M, Z) is tant if
- · M is irreducible

"every embedded 2-sphere bounds an embedded 3-ball"

· R(X) is minimal with respect to the Thurston (pseudo-) norm

$$\begin{aligned} \|\cdot\|_{T_{h}} \colon & H_{2}(\mathcal{M};\mathbb{R}) \longrightarrow \mathbb{R} \\ \|\|\cdot\|_{T_{h}} \coloneqq & \min_{\Sigma \hookrightarrow \mathcal{M}} \left(-\chi(\Sigma)\right) \\ & \sum_{\Sigma \hookrightarrow \mathcal{M}} \left[\Sigma\right] = \alpha \end{aligned}$$

Such manifolds & their relationships w/ tant foliations were studied by Thurston, Gabai, etc.

SUTURED FLOER (SFH) (Juhász, '07)

Given a balanced (M, X), there is always a belanced diagram encoding it.

For such diagrams, we can...

(i) construct Lagrangian tori & generate a chain group from their intersection points

(22) create a differential counting the ways intersection points can be connected by holomorphic disks

Stretch We saw we can associate to a Seifert surface SCY a balanced sutured manifold Y(S):= (Y \ int(S × I), 8)

We will use this to prove

(b)

a HFK(Y,K) is trivial in Alexander gradings exceeding g(K).

HFK(Y,K) is non-zero at Alexander grading g(K)

Sketch of Lemma I [Ni]

M irreducible & (M, g) not test means one of $R_{\pm}(g)$ is either

- · compressible
- · does not realize the Thurston norm f zts homology class.

In either case, we can decompose (M, g) along a surface S such that $\chi(S) \ge \chi(R(g))$ which ever is giving you problems

The result will be two connected sutured manifolds

 $(M_+, \aleph_+) \& (M_-, \aleph_-)$ There's an explicit Morse function $f_+ \cup f_$ which can be modified toto a self-indexing one for which the corresponding (balanced) diagram has $\bowtie \cap \beta = \emptyset$, hence there are no SFH generators!

a surface decomposition There's have such a decomposition, then $SFH(Y(s)) = \bigoplus SFH(Y(N(k), s))$ SE Spin (YIN(K)) <(S,t)~[S]= <(S,t) a term aggregating $c_{(5,t)} \in H^{*}(Y(s), \partial Y(s); \mathbb{Z})$ · the Euler characteristic of S is the relative Euler · the rotation of t about the positive unit vector field on 25. class of 5& t • projectly the positive unit normal vector field to 25 to V⁺,

its rotation about t

PUNCHLINE c(S,t) = -2g(S) \downarrow

 \rightarrow SFH(Y\N(K),S) N N N SE Spin (YIN(K)) <(\$,t)~[S]=-2q() $\widehat{HFK}(Y, K, [S], q(S))$

Juhász cites Oz-Sz "Holomorphic disks, link invariats, & multivariable Alexander Polynomial"

A sutured manifold hierarchy is a "tower" of decompositions

 $(M_{o}, \chi_{o}) \xrightarrow{S_{i}} (M_{i}, \chi_{i}) \xrightarrow{S_{z}} \cdots \xrightarrow{S_{n}} (M_{n}, \chi_{n})$ where $(M_{n}, \chi_{n}) = (R \times I, \Im R \times I)$

i.e. (Ma, Ya) is a "product sutured manifold"

Every taut, balanced sutured manifold (M, X) admits a hierarchy

LEMMA 2

LEMMA 1

When S a open surface in (M, χ) admitting a decomposition $(M, \chi) \xrightarrow{S} (M', \chi')$, then

$$SFH(M', \delta') \cong \bigoplus_{\substack{S \in Spin^{S}(M)\\ S \text{ is "outer" to } S}} SFH(M, \delta, S) \leq SFH(M, \delta)$$

LEMMA 3

If $(M, \chi) = (R \times I, \partial R \times I)$ for some surface R, then SFH $(M, \chi) \cong \mathbb{Z}$

Let Z be genus monimizing for K -> Y, then Y(E) is tant & Lemma I tells us Y(Z) has a hierarchy $\Upsilon(\Sigma) \xrightarrow{S_1} (M_1, \chi_1) \xrightarrow{S_2} \dots \xrightarrow{S_n} (M_n, \chi_n)$ Lemma 2 & Lemma 3 tell us $SFH(Y(\mathbb{Z})) \geq SFH(M_n, \mathcal{Y}_n) \cong \mathbb{Z}$ so using the conclusion of (a) $SFH(Y(\mathbb{Z})) \cong \widehat{HFK}(Y, K, [\mathbb{Z}], g(K))$ and we're done.

Second-from-top Grading

Theorem (Ni, 2021) Let Y a closed, oriented 3-menifold & KCY is a hyperbolic fibered knot with fiber F& monodromy Q. If rack(HFK(Y, K, [F], g(F)-1)) = 1then I is freely isotopic to a pseudo-Anorou map w/ont fixed points. We say a map is pseudo-Anosov it there is a pair of measured foliations F, & Fz such that

i. leaves in F, are transverse to leaves in Fz
ii. F, & Fz are stable under Q
izi. With respect to the length mensuer,
Q "stretches" F, & "squishes" Fz.

Under else could it tell us?

THANK You!

Special thanks to Akram Alishahi, Peter Lambert - Cole, & my collaborators

REFERENCES

Baldwin & _ "A note on the knot Floer homology Vela Vick of Fibered Knots" Hom - "Lecture notes on Heegaard Floer Homology" Juhász – "Floer homology & surface decompositions" L. "Holomorphic dists & sutured manifolds" Ni - "Knot Floer homology detects fibered knots" L "A note on knot Floer homology & fixed points of monodromy" Ozsváth & __"Holomorphic disks & genus bounds" Szabó "Holomorphic disks link invariats "Holomorphic disks, link invariants, & multivariable Alexander Polynomial" Rasmussen, "Floer homology & knot complements"