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We will present a simpler proof of the above first noticed by Jake

Rasmussen.
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cube of resolutions of a diagram D.
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Khovanov defined a bigraded (co)homology for knots using the

cube of resolutions of a diagram D.

Generators are resolutions with components labeled by generators

{v±} of the Frobenius algebra A ∼=
F[x]
x2 . Differential is defined

using the multiplication and comultiplication of A.

+
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Let N be the number of crossings in D and let ε ∈ {0, 1}N encode

a resolution Dε with C components.
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Let N be the number of crossings in D and let ε ∈ {0, 1}N encode

a resolution Dε with C components.

Let α = v1 ⊗ · · ·⊗ vC ∈ A⊗C =: A(Dε).
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Let N be the number of crossings in D and let ε ∈ {0, 1}N encode

a resolution Dε with C components.

Let α = v1 ⊗ · · ·⊗ vC ∈ A⊗C =: A(Dε).

|ε| :=
n∑

i=1

ε(i) N± := #(±-crossings)

deg(v±1) = ±1 deg(⊗ivi) :=
∑

deg(vi)

(co)homological grading

grh(α) := |v|−N−

quantum grading

grq(α) := deg(α) + grh(α) +N+ −N−

E
↳
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The q-grading on Khovanov homology defines a (descending)

filtration of CKh(K;F):

Fj = {α ∈ CKh(K;F) | grq(α) ≥ j}
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The q-grading on Khovanov homology defines a (descending)

filtration of CKh(K;F):

Fj = {α ∈ CKh(K;F) | grq(α) ≥ j}

Lee modified the differential of CKh(K;Q) to produce a filtered

complex (CKhLee, dLee,F•) called the Lee complex.

The associated spectral sequence converges to a bigraded

(co)homology theory

KhLee(K) =
⊕

h,s∈Z

Khh,sLee(K)

where the s-grading is induced by the filtration F•.

For Σ a connected, oriented cobordism between knots K0 and K1,

there’s a filtered isomorphism φS : KhLee(K0)→ KhLee(K1)
of degree −2g(Σ).
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For L a link on n-components, Lee also proved KhLee(L) ∼= Q2n

via a concrete bijection of generators and orientations on L. We will

use the basis

a = v− + v+ b = v− − v+
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via a concrete bijection of generators and orientations on L. We will

use the basis

a = v− + v+ b = v− − v+
-

L

Red(seite
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For L a link on n-components, Lee also proved KhLee(L) ∼= Q2n

via a concrete bijection of generators and orientations on L.

We will use the basis

a = v− + v+ b = v− − v+

if ( count(C) + isCounterClockwise(C) = 0 mod 2 ):

label(C) = a

else:

label(C) = b

t
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• For a knot K, Rasmussen noticed the largest s grading

supported in KhLee(K) is always 2 more than the smallest

supported s-grading.
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• For a knot K, Rasmussen noticed the largest s grading

supported in KhLee(K) is always 2 more than the smallest

supported s-grading.

s(K) := smax(K)− 1 = smin(K) + 1
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• He also proved s yields a group homomorphism

s : Cs → Z
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Rasmussen proved s(so) = smin(K)
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• For a knot K, Rasmussen noticed the largest s grading

supported in KhLee(K) is always 2 more than the smallest

supported s-grading.

s(K) := smax(K)− 1 = smin(K) + 1

• He also proved s yields a group homomorphism

s : Cs → Z

• Additionally, if so is the Lee class for an orientation o on K,

Rasmussen proved s(so) = smin(K)

• With these, he was able to show |s(K)| ≤ 2g4(K) and in

particular |s(Tp,q)| = 2g4(Tp,q). We offer the proof.
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Proof
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Theorem

|s(K)| ≤ 2g4(K).

Proof

Let S+ : K → U be a cobordism of Euler characteristic −2g4(K).
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Theorem

|s(K)| ≤ 2g4(K).

Proof

Let S+ : K → U be a cobordism of Euler characteristic −2g4(K).

Let α ∈ KhLee(K) have maximal s-grading.

S+ induces a filtered isomorphism φS+ of degree −2g4(K), so...
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Theorem

|s(K)| ≤ 2g4(K).

Proof

Let S+ : K → U be a cobordism of Euler characteristic −2g4(K).

Let α ∈ KhLee(K) have maximal s-grading.

S+ induces a filtered isomorphism φS+ of degree −2g4(K), so...

s(φS+(α)) ≥ s(α)− 2g4(K)

1 ≥ s(φS+(α))︸ ︷︷ ︸
φS+ an iso.

smax(U)=1

≥ s(α)− 2g4(K)
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Theorem

|s(K)| ≤ 2g4(K).

Proof

Let S+ : K → U be a cobordism of Euler characteristic −2g4(K).

Let α ∈ KhLee(K) have maximal s-grading.

S+ induces a filtered isomorphism φS+ of degree −2g4(K), so...

s(φS+(α)) ≥ s(α)− 2g4(K)

1 ≥ s(φS+(α))︸ ︷︷ ︸
φS+ an iso.

smax(U)=1

≥ s(α)− 2g4(K)

2g4(K) + 1 ≥ s(α) = smax(K)
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2g4(K) ≥ s(α)− 1 = s(K)
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2g4(K) ≥ s(α)− 1 = s(K)

Let S− be the mirror of S+: this gives a cobordism from the

concordance inverse −K to the unknot U . By same argument get

s(−K) ≤ 2g4(K)
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Let S− be the mirror of S+: this gives a cobordism from the

concordance inverse −K to the unknot U . By same argument get

s(−K) ≤ 2g4(K)
s(−K)=−s(K)
−−−−−−−−−→
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2g4(K) ≥ s(α)− 1 = s(K)

Let S− be the mirror of S+: this gives a cobordism from the

concordance inverse −K to the unknot U . By same argument get

s(−K) ≤ 2g4(K)
s(−K)=−s(K)
−−−−−−−−−→ s(K) ≥ −2g4(K)

Therefore |s(K)| ≤ 2g4(K).

!
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Given a positive torus knot,

note for any orientation o, we have

grh(so) = 0
︸ ︷︷ ︸
(lowest possible)

[α]=[so]⇔α=so
−−−−−−−−−→

t
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note for any orientation o, we have

grh(so) = 0
︸ ︷︷ ︸
(lowest possible)

[α]=[so]⇔α=so
−−−−−−−−−→ s[s0] =

smallest q-grading
of summand in so
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note for any orientation o, we have

grh(so) = 0
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(lowest possible)

[α]=[so]⇔α=so
−−−−−−−−−→ s[s0] =

smallest q-grading
of summand in so

= −(#components)
︸ ︷︷ ︸

deg(v−⊗···⊗v−)
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Given a positive torus knot,

note for any orientation o, we have

grh(so) = 0
︸ ︷︷ ︸
(lowest possible)

[α]=[so]⇔α=so
−−−−−−−−−→ s[s0] =

smallest q-grading
of summand in so

= −(#components)
︸ ︷︷ ︸

deg(v−⊗···⊗v−)

+ 0︸︷︷︸
grh(s!0)

+N+ − 0︸︷︷︸
N−

Observe diagram gives Seifert surface with

χ(Σ) = −s(so) = −smin(K)

t
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Given a positive torus knot,

note for any orientation o, we have

grh(so) = 0
︸ ︷︷ ︸
(lowest possible)

[α]=[so]⇔α=so
−−−−−−−−−→ s[s0] =

smallest q-grading
of summand in so

= −(#components)
︸ ︷︷ ︸

deg(v−⊗···⊗v−)

+ 0︸︷︷︸
grh(s!0)

+N+ − 0︸︷︷︸
N−

Observe diagram gives Seifert surface with

χ(Σ) = −s(so) = −smin(K)⇒ −χ(Σ) + 1 = s(K)

t
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Finally, conclude

2g3(K) ≤ 2g(Σ) = 2− χ(Σ)− 1
︸ ︷︷ ︸

genus formula

= s(K) ≤ 2g4(K)

Since g3(K) ≥ g4(K) in general, have equality.

!
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Let K and J be knots. Define their cobordism distance to be

dcob(K,J) := g4(K#− J)

This is not a metric on knots, but does define a metric on the

smooth concordance group Cs.

Squeezed knots are cross-sections of genus minimizing

cobordisms between a positive torus knot and a negative torus knot.
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Other than torus knots, many natural and interesting classes are

squeezed!

• Positive knots

Knots that admit diagrams with only positive / negative crossings.

• Alternating knots

Knots that admits a diagram whose crossings alternate between

over and under.

• Quasipositive knots Knots arising as closures of braid words

consisting of conjugated Artin generators.

• Quasihomogenous knots Knots arising from an

ribbon-immersed plumbing of two surfaces together along a disk:

one bounded by a quasipositive knot and the other bounded by a

quasinegative knot.
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• Choose a quasipositive braid β, the conjugated Artin generators

in β give ribbon-immersed bands between the Seifert circles of

β. Result is the Rudolph surface of β.

• Puncturing one of the Seifert disks of β turns R into a cobordism

from β to the unknot.
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• Let β ∈ Bn be a quasipositive braid word.

t
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• Let β ∈ Bn be a quasipositive braid word.

• Suppose β has I inverse Artin generators and A+ I Artin

generators and let R be its associated (once-punctured) Rudolph

surface.
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• Let β ∈ Bn be a quasipositive braid word.

• Suppose β has I inverse Artin generators and A+ I Artin

generators and let R be its associated (once-punctured) Rudolph

surface.

• Goal: extend R to get a cobordism Σ from a torus knot to the

unknot and then show that cobordism has minimal genus.

t
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• Add I positive bands to the braid to cancel the inverse Artin

generators.

t
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• Add I positive bands to the braid to cancel the inverse Artin

generators.

• For some p, we can add p(n− 1)− (A+ I) additional positive

bands to get a braid whose closure is Tn,p.
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• Add I positive bands to the braid to cancel the inverse Artin

generators.

• For some p, we can add p(n− 1)− (A+ I) additional positive

bands to get a braid whose closure is Tn,p.

• Adding these bands to β gives a cobordism C from β to Tn,p.

t
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• Add I positive bands to the braid to cancel the inverse Artin

generators.

• For some p, we can add p(n− 1)− (A+ I) additional positive

bands to get a braid whose closure is Tn,p.

• Adding these bands to β gives a cobordism C from β to Tn,p.

Concatenating C with R gives a cobordism Σ from Tn,p to the

unknot.

t
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Note the Euler characteristic of Σ is

n−
(
(p(n− 1)− (A+ I)) + (A+ I)

)
= n− pn+ p

From which the genus formula yields

g(Σ) = 1− (n−pn+p)+1
2 = (n−1)(p−1)

2 = g4(Tn,p)

Therefore Σ is genus minimizing. !
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Corollary

If R is a Rudolph surface for a quasipositive knot K, then

g4(K) = g(R).
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Corollary

If R is a Rudolph surface for a quasipositive knot K, then

g4(K) = g(R).

Corollary

g4 is additive on quasipositive knots (and therefore, on positive torus

knots).
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Lemma

If K is a slice of a (connected) genus minimizing cobordism from a

(quasi)positive knot to a (quasi)negative knot, then K is squeezed.

#

vie
for genus minimizing

cobordism

E
- quasinegative

quasipositive
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Proof

#

*ol genus minimizing
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Lemma

If K is a slice of a (connected) genus minimizing cobordism from a

(quasi)positive knot to a (quasi)negative knot, then K is squeezed.

Proof

#

genus is 94(π+#-I) = dcob(T+T)
add bands antil add bands until

negative torus
positive torus ->
e
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Lemma

If K is a slice of a (connected) genus minimizing cobordism from a

(quasi)positive knot to a (quasi)negative knot, then K is squeezed.

Proof

#

replace one genus minimizing
cobordism / another

--
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Lemma

If K is a slice of a (connected) genus minimizing cobordism from a

(quasi)positive knot to a (quasi)negative knot, then K is squeezed.

Proof

Using this lemma, Feller, Lewark, and Lobb prove that alternating

and quasihomogenous knots are squeezed.

"Quasihomogeneous



Ribbon Cobordisms

I. The Milnor Conjecture

II. Squeezed knots

• The cobordism

distance
• Species of squeezed

knots

• Quasipositive knots

• Ribbon Cobordisms

III. Slice torus invariants

and squeezed knots

IV. Obstructions

V. Future directions

22 / 43

In showing alternating knots are squeezed, we showed an arbitrary

alternating knot resides in a ribbon cobordism

(1) T+
R1−−→ A+

R2−−→ A
R3−−→ A−

R4−−→ T−
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In showing alternating knots are squeezed, we showed an arbitrary

alternating knot resides in a ribbon cobordism
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one of these cases.
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In showing alternating knots are squeezed, we showed an arbitrary

alternating knot resides in a ribbon cobordism

(1) T+
R1−−→ A+

R2−−→ A
R3−−→ A−

R4−−→ T−

Similarly, quasihomogenous knots live in a “co-span” of ribbon

cobordisms

(2) T+
R+
−−→ Q

R−
←−− T−

All squeezing cobordisms given by Feller, Lewark, and Lobb fall into

one of these cases.

Question

Are all squeezed knots contained in cobordisms of forms 1 or 2?
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2 and Oszváth and Szabó’s τ invariant.
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Only known method for proving a knot is squeezed is to exhibit a

genus minimizing cobordism.

Let φ : Cs → R be a group homomorphism.

φ is a slice torus invariant if for any knot K we have

|φ[K]| ≤ g4(K)

|φ[Tp,q]| = g4(Tp,q)

Examples include s
2 and Oszváth and Szabó’s τ invariant.

Denote the collection of all slice torus invariants by ST .
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Livingston defines the stable 4-ball genus to be

ĝ4(K) = lim
n→∞

g4(#nK)

n
= lim

n→∞

g4(

n-fold connect sum︷ ︸︸ ︷
K#K# · · ·#K)

n
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Livingston defines the stable 4-ball genus to be

ĝ4(K) = lim
n→∞

g4(#nK)

n
= lim

n→∞

g4(

n-fold connect sum︷ ︸︸ ︷
K#K# · · ·#K)

n

Feller, Lewark, and Lobb define the &-invariant of K to be

&(K) = lim
p→∞

ĝ4(K#Tp,p+1)− ĝ4(Tp,p+1)
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Squeezed knot valuation theorem (Feller, Lewark, Lobb ‘21)

If K is squeezed, then &(K) = −&(−K).
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Squeezed knot valuation theorem (Feller, Lewark, Lobb ‘21)

If K is squeezed, then &(K) = −&(−K).

Slice torus value theorem (Feller, Lewark, Lobb ‘21)

The set of all values in R taken on by K under slice torus invariants

is [−&(−K), &(K)].
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Squeezed knot valuation theorem (Feller, Lewark, Lobb ‘21)

If K is squeezed, then &(K) = −&(−K).

Slice torus value theorem (Feller, Lewark, Lobb ‘21)

The set of all values in R taken on by K under slice torus invariants

is [−&(−K), &(K)].

Corollary

All slice torus invariants agree on squeezed knots.
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Lemma (Livingston ’10)

ĝ4 is well-defined and induces a seminorm on the topological vector

space Cs ⊗ R.

This implies

tp(K) := ĝ4(K#Tp,p+1)− ĝ4(Tp,p+1) ≥ 0.

So & will be well-defined if we can show tp(K) is monotone

decreasing.
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Recall Tp−1,p is the closure of β = (σ1σ2 · · ·σp−1)p−1

Adding 2(p− 1) bands gives a cobordism

C : Tp−1,p → Tp,p+1 g(C) =
2(p− 1)

2
= p− 1
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Let Q be a genus minimizing cobordism from #n(Tp−1,p#K) to

the unknot.

t

Go
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Let Q be a genus minimizing cobordism from #n(Tp−1,p#K) to

the unknot.

Gluing #nC to Q gives a cobordism Q̃ : #n(Tp,p+1#K)→ U

t

of i
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Let Q be a genus minimizing cobordism from #n(Tp−1,p#K) to

the unknot.

Gluing #nC to Q gives a cobordism Q̃ : #n(Tp,p+1#K)→ U

g(Q̃) = g(Q) + n(p− 1)
︸ ︷︷ ︸
g(#nC)

t

of i
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Let Q be a genus minimizing cobordism from #n(Tp−1,p#K) to

the unknot.

Gluing #nC to Q gives a cobordism Q̃ : #n(Tp,p+1#K)→ U

g(Q̃) = g(Q) + n(p− 1)
︸ ︷︷ ︸
g(#nC)

= g4(#
n(Tp−1,p#K)))

︸ ︷︷ ︸
g(Q)

+n(p− 1)

t

of i
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g4(#
n(Tp,p+1#K))

︸ ︷︷ ︸
≤g(Q̃)

≤ g4(#
n(Tp−1,p#K))) + n(p− 1)

︸ ︷︷ ︸
=g(Q̃)
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g4(#
n(Tp,p+1#K))

︸ ︷︷ ︸
≤g(Q̃)

≤ g4(#
n(Tp−1,p#K))) + n(p− 1)

︸ ︷︷ ︸
=g(Q̃)

Algebra and observation that ĝ4(Tp,q) = g4(Tp,q) give
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g4(#
n(Tp,p+1#K))

︸ ︷︷ ︸
≤g(Q̃)

≤ g4(#
n(Tp−1,p#K))) + n(p− 1)

︸ ︷︷ ︸
=g(Q̃)

Algebra and observation that ĝ4(Tp,q) = g4(Tp,q) give

g4(#n(Tp,p+1#K))
n − ĝ4(Tp,p+1)
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Algebra and observation that ĝ4(Tp,q) = g4(Tp,q) give

g4(#n(Tp,p+1#K))
n − ĝ4(Tp,p+1) ≤

g4(#n(Tp−1,p#K)))
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g4(#
n(Tp,p+1#K))

︸ ︷︷ ︸
≤g(Q̃)

≤ g4(#
n(Tp−1,p#K))) + n(p− 1)

︸ ︷︷ ︸
=g(Q̃)

Algebra and observation that ĝ4(Tp,q) = g4(Tp,q) give

g4(#n(Tp,p+1#K))
n − ĝ4(Tp,p+1) ≤

g4(#n(Tp−1,p#K)))
n − ĝ4(Tp−1,p)

Inequality is preserved under limits:

tp(K) = lim
n→∞

g4(#n(Tp,p+1#K))
n − ĝ4(Tp,p+1)

≤ lim
n→∞

g4(#n(Tp−1,p#K)))
n − ĝ4(Tp−1,p) = tp−1(K)

!
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Lemma If K is squeezed, there is a p ∈ N such that K squeezed

between Tp,p+1 and −Tp,p+1.

Let

C+ : Tp,p+1 → K C− : K → −Tp,p+1

be the cobordisms implicit in the lemma, then
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Lemma If K is squeezed, there is a p ∈ N such that K squeezed

between Tp,p+1 and −Tp,p+1.

Let

C+ : Tp,p+1 → K C− : K → −Tp,p+1

be the cobordisms implicit in the lemma, then

0 ≤ !(K)− (−!(−K))
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Lemma If K is squeezed, there is a p ∈ N such that K squeezed

between Tp,p+1 and −Tp,p+1.

Let

C+ : Tp,p+1 → K C− : K → −Tp,p+1

be the cobordisms implicit in the lemma, then

0 ≤ !(K)− (−!(−K))
︸ ︷︷ ︸

!(K)≥0

≤ tp(K) + tp(−K)
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!(K)≥0

≤ tp(K) + tp(−K)
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tp(K) monotone decreasing

and tp(K)→!(K)
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!(K)≥0

≤ tp(K) + tp(−K)
︸ ︷︷ ︸

tp(K) monotone decreasing

and tp(K)→!(K)

= ĝ4(Tp,p+1#K) + ĝ4(Tp,p+1#−K)− g4(Tp,p+1#Tp,p+1)
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Lemma If K is squeezed, there is a p ∈ N such that K squeezed

between Tp,p+1 and −Tp,p+1.

Let
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be the cobordisms implicit in the lemma, then

0 ≤ !(K)− (−!(−K))
︸ ︷︷ ︸

!(K)≥0

≤ tp(K) + tp(−K)
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tp(K) monotone decreasing

and tp(K)→!(K)

= ĝ4(Tp,p+1#K) + ĝ4(Tp,p+1#−K)− g4(Tp,p+1#Tp,p+1)︸ ︷︷ ︸
ĝ4(Tp,p+1)=g4(Tp,p+1)
and g4 additive on positive

torus knots
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Lemma If K is squeezed, there is a p ∈ N such that K squeezed

between Tp,p+1 and −Tp,p+1.

Let

C+ : Tp,p+1 → K C− : K → −Tp,p+1

be the cobordisms implicit in the lemma, then

0 ≤ !(K)− (−!(−K))
︸ ︷︷ ︸

!(K)≥0

≤ tp(K) + tp(−K)
︸ ︷︷ ︸

tp(K) monotone decreasing

and tp(K)→!(K)

= ĝ4(Tp,p+1#K) + ĝ4(Tp,p+1#−K)− g4(Tp,p+1#Tp,p+1)︸ ︷︷ ︸
ĝ4(Tp,p+1)=g4(Tp,p+1)
and g4 additive on positive

torus knots

≤ g(C+) + g(C−)︸ ︷︷ ︸
ĝ4(K)≤g4(K)

−dcob(Tp,p+1,−Tp,p+1) = 0 !
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Lemma

For any [K] ∈ Cs and any slice torus invariant φ, we have

φ[K] ≤ ĝ4(K).
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Lemma

For any [K] ∈ Cs and any slice torus invariant φ, we have

φ[K] ≤ ĝ4(K).

Let φ be a slice torus invariant, then...
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Lemma

For any [K] ∈ Cs and any slice torus invariant φ, we have

φ[K] ≤ ĝ4(K).

Let φ be a slice torus invariant, then...

φ(−K) = φ(Tp,p+1#−K)− φ(Tp,p+1)
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For any [K] ∈ Cs and any slice torus invariant φ, we have

φ[K] ≤ ĝ4(K).

Let φ be a slice torus invariant, then...

φ(−K) = φ(Tp,p+1#−K)− φ(Tp,p+1)

≤ ĝ4

(
Tp,p+1#−K

)
− ĝ4(Tp,p+1)
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For any [K] ∈ Cs and any slice torus invariant φ, we have
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Let φ be a slice torus invariant, then...

φ(−K) = φ(Tp,p+1#−K)− φ(Tp,p+1)

≤ ĝ4

(
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)
− ĝ4(Tp,p+1) = tp(−K)
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≤ ĝ4

(
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)
− ĝ4(Tp,p+1) = tp(−K)

Taking the limit as p→∞ yields an inequality
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Lemma

For any [K] ∈ Cs and any slice torus invariant φ, we have

φ[K] ≤ ĝ4(K).

Let φ be a slice torus invariant, then...

φ(−K) = φ(Tp,p+1#−K)− φ(Tp,p+1)

≤ ĝ4

(
Tp,p+1#−K

)
− ĝ4(Tp,p+1) = tp(−K)

Taking the limit as p→∞ yields an inequality

−φ[K] = φ[−K] ≤ !(−K)⇒ φ[K] ≥ −!(−K)
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Lemma

For any [K] ∈ Cs and any slice torus invariant φ, we have

φ[K] ≤ ĝ4(K).

Let φ be a slice torus invariant, then...

φ(−K) = φ(Tp,p+1#−K)− φ(Tp,p+1)

≤ ĝ4

(
Tp,p+1#−K

)
− ĝ4(Tp,p+1) = tp(−K)

Taking the limit as p→∞ yields an inequality

−φ[K] = φ[−K] ≤ !(−K)⇒ φ[K] ≥ −!(−K)

A similar procedure gives the upper bound of !(K). !
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Let T ⊂ Cs ⊗ R denote the subspace generated by positive torus

knots.

Using Levine-Tristram signatures, Litherland proved that the positive

torus knots are linearly independent in Cs ⊗Q.
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Proof sketch

Let T ⊂ Cs ⊗ R denote the subspace generated by positive torus

knots.

Using Levine-Tristram signatures, Litherland proved that the positive

torus knots are linearly independent in Cs ⊗Q.

Therefore, ∃! f : T ∩ (Cs ⊗Q)→ Q such that f(Tp,q) = g4(Tp,q)
for positive torus knots Tp,q.



{φ(K)}φ∈ST = [−"(−K), "(K)]

I. The Milnor Conjecture

II. Squeezed knots

III. Slice torus invariants

and squeezed knots

• Slice torus invariants

• Stable invariants
• The

Feller-Lewark-Lobb

theorems

• !(K) is well-defined

•K squeezed

⇒ !(K) = −!(−K)
•
{φ(K)}φ∈ST =
[−!(−K), !(K)]

IV. Obstructions

V. Future directions

33 / 43

Proof sketch

Let T ⊂ Cs ⊗ R denote the subspace generated by positive torus

knots.

Using Levine-Tristram signatures, Litherland proved that the positive

torus knots are linearly independent in Cs ⊗Q.
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Additivity of ĝ4 on positive torus knots and ĝ4 a seminorm imply

f ≤ ĝ4|T ∩(Cs⊗Q)
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Using Levine-Tristram signatures, Litherland proved that the positive

torus knots are linearly independent in Cs ⊗Q.

Therefore, ∃! f : T ∩ (Cs ⊗Q)→ Q such that f(Tp,q) = g4(Tp,q)
for positive torus knots Tp,q.

Additivity of ĝ4 on positive torus knots and ĝ4 a seminorm imply

f ≤ ĝ4|T ∩(Cs⊗Q)

Topologizing T carefully, one can realize T ∩ (Cs ⊗Q) as a dense

subset of T .
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Proof sketch

Let T ⊂ Cs ⊗ R denote the subspace generated by positive torus

knots.

Using Levine-Tristram signatures, Litherland proved that the positive

torus knots are linearly independent in Cs ⊗Q.

Therefore, ∃! f : T ∩ (Cs ⊗Q)→ Q such that f(Tp,q) = g4(Tp,q)
for positive torus knots Tp,q.

Additivity of ĝ4 on positive torus knots and ĝ4 a seminorm imply

f ≤ ĝ4|T ∩(Cs⊗Q)

Topologizing T carefully, one can realize T ∩ (Cs ⊗Q) as a dense

subset of T .

We then complete f and ĝ4 over R to get a R-valued functional f̃

satisfying f̃ ≤ ĝ4|T .
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Given α ∈ [−"(−K), "(K)], we get two cases depending on

whether [K] is in T .
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Given α ∈ [−"(−K), "(K)], we get two cases depending on

whether [K] is in T .

The first case is trivial if one presumes the existence of a slice torus

invariant since [−"(−K), "(K)] will be a single point for any knot in

T .
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Given α ∈ [−"(−K), "(K)], we get two cases depending on

whether [K] is in T .

The first case is trivial if one presumes the existence of a slice torus

invariant since [−"(−K), "(K)] will be a single point for any knot in

T .

Feller, Lewark, and Lobb provide a general strategy for proving the

above which is agnostic to the existence of s and τ .
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whether [K] is in T .

The first case is trivial if one presumes the existence of a slice torus

invariant since [−"(−K), "(K)] will be a single point for any knot in

T .

Feller, Lewark, and Lobb provide a general strategy for proving the

above which is agnostic to the existence of s and τ .

The goal is to extend f̃ to a linear functional F on

TK := T + 〈[K]〉 satisfying F ([K]) = α.
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Having done so, one can show F ≤ ĝ4|TK .
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whether [K] is in T .

The first case is trivial if one presumes the existence of a slice torus

invariant since [−"(−K), "(K)] will be a single point for any knot in

T .

Feller, Lewark, and Lobb provide a general strategy for proving the

above which is agnostic to the existence of s and τ .

The goal is to extend f̃ to a linear functional F on

TK := T + 〈[K]〉 satisfying F ([K]) = α.

Having done so, one can show F ≤ ĝ4|TK .

Recall ĝ4 is a semi-norm on Cs and therefore a subadditive function.
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Given α ∈ [−"(−K), "(K)], we get two cases depending on

whether [K] is in T .

The first case is trivial if one presumes the existence of a slice torus

invariant since [−"(−K), "(K)] will be a single point for any knot in

T .

Feller, Lewark, and Lobb provide a general strategy for proving the

above which is agnostic to the existence of s and τ .

The goal is to extend f̃ to a linear functional F on

TK := T + 〈[K]〉 satisfying F ([K]) = α.

Having done so, one can show F ≤ ĝ4|TK .

Recall ĝ4 is a semi-norm on Cs and therefore a subadditive function.

we conclude F may be extended to all of Cs ⊗ R by Hahn-Banach.

!
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Let W+(K, t) denote the t-twisted positive Whitehead double of K.

A



Obstructing Squeezed-ness with slice torus invariants

I. The Milnor Conjecture

II. Squeezed knots

III. Slice torus invariants

and squeezed knots

IV. Obstructions
• Obstructing

Squeezed-ness with

slice torus invariants
• Squeezing

obstructions
• Lipshitz-Sarkar

Refinements of s

V. Future directions

36 / 43

Let W+(K, t) denote the t-twisted positive Whitehead double of K.

Theorem (Hedden and Ording ‘05)

τ(W+(T2,2n+1, t)) =

{
0 t > 2n− 1

1 t ≤ 2n− 1

A
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Let W+(K, t) denote the t-twisted positive Whitehead double of K.

Theorem (Hedden and Ording ‘05)

τ(W+(T2,2n+1, t)) =

{
0 t > 2n− 1

1 t ≤ 2n− 1

Some computer computations revealed s
2 )= τ on the knots:

W+(T2,5, 5), W+(T2,5, 4), W+(T2,7, 7) and a few others.

A
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There are partial results in the direction of generalizing Hedden and

Ording’s method to slice torus invariants other than τ .
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There are partial results in the direction of generalizing Hedden and

Ording’s method to slice torus invariants other than τ .

Theorem (Lewark-Zibrowius ’22)

For P a pattern,1 K a knot, and φ ∈ ST , there is a unique value

ϑφ(P,K) ∈ Z ∪∞ such that

φ(P (K, t)) = φ(P (K, t− 1))−

{
1 t = ϑφ(P,K)

0 else
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There are partial results in the direction of generalizing Hedden and

Ording’s method to slice torus invariants other than τ .

Theorem (Lewark-Zibrowius ’22)

For P a pattern,1 K a knot, and φ ∈ ST , there is a unique value

ϑφ(P,K) ∈ Z ∪∞ such that

φ(P (K, t)) = φ(P (K, t− 1))−

{
1 t = ϑφ(P,K)

0 else

Theorem (Livingston-Naik ’06, Lewark-Zibrowius ’22)

For any φ ∈ ST , we have TB(K) ≤ ϑφ(W+,K) ≤ −TB(−K)
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There are partial results in the direction of generalizing Hedden and

Ording’s method to slice torus invariants other than τ .

Theorem (Lewark-Zibrowius ’22)

For P a pattern,1 K a knot, and φ ∈ ST , there is a unique value

ϑφ(P,K) ∈ Z ∪∞ such that

φ(P (K, t)) = φ(P (K, t− 1))−

{
1 t = ϑφ(P,K)

0 else

Theorem (Livingston-Naik ’06, Lewark-Zibrowius ’22)

For any φ ∈ ST , we have TB(K) ≤ ϑφ(W+,K) ≤ −TB(−K)

Question What is ϑs(W+, T2,2n+1)?

1with wrapping number 2 and winding number zero
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1. (M,d) contains an isometric copy of Z.
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1. (M,d) contains an isometric copy of Z.

2. d(f(K1), f(K2)) ≤ dcob(K1,K2)
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Problem: not very many known slice torus invariants!

Feller-Lewark-Lobb define a squeezing obstruction to be a map

f : Cs → (M,d) into a metric space such that

1. (M,d) contains an isometric copy of Z.

2. d(f(K1), f(K2)) ≤ dcob(K1,K2)
3. For p, q ≥ 1 and coprime, f(T±p,q) = ±g4(Tp,q).

Lemma If K squeezed between T+ and T−, then for any squeezing

obstruction f , one has

f [K] = g4(T+)− g4(T+#−K) = g4(K#− T−)− g4(T−)
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Problem: not very many known slice torus invariants!

Feller-Lewark-Lobb define a squeezing obstruction to be a map

f : Cs → (M,d) into a metric space such that

1. (M,d) contains an isometric copy of Z.

2. d(f(K1), f(K2)) ≤ dcob(K1,K2)
3. For p, q ≥ 1 and coprime, f(T±p,q) = ±g4(Tp,q).

Lemma If K squeezed between T+ and T−, then for any squeezing

obstruction f , one has

f [K] = g4(T+)− g4(T+#−K) = g4(K#− T−)− g4(T−)

Note slice torus invariants are squeezing obstructions and that all

squeezing obstructions are equal on squeezed knots!
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• Lipshitz and Sarkar found a suspension spectra for Khovanov

homology.
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homology.

• Consequently, Khovanov homology admits Steenrod squares

Sqn : Kh(K)
grh &→grh+n
−−−−−−−→ Kh(K).
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• Lipshitz and Sarkar found a suspension spectra for Khovanov

homology.

• Consequently, Khovanov homology admits Steenrod squares

Sqn : Kh(K)
grh &→grh+n
−−−−−−−→ Kh(K).

• Letting α be some Steenrod square2, they define

rα+(K) = max{q ∈ 2Z+ 1 | q is α-half-full︸ ︷︷ ︸(
i.e. a certain
commutative
diagram exists

)
}+ 1

sα+(K) = max{q ∈ 2Z+ 1 | q is
︷ ︸︸ ︷
α-full }+ 3
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• Lipshitz and Sarkar found a suspension spectra for Khovanov

homology.

• Consequently, Khovanov homology admits Steenrod squares

Sqn : Kh(K)
grh &→grh+n
−−−−−−−→ Kh(K).

• Letting α be some Steenrod square2, they define

rα+(K) = max{q ∈ 2Z+ 1 | q is α-half-full︸ ︷︷ ︸(
i.e. a certain
commutative
diagram exists

)
}+ 1

sα+(K) = max{q ∈ 2Z+ 1 | q is
︷ ︸︸ ︷
α-full }+ 3

rα−(K) = −rα+(−K) sα−(K) = −sα+(−K)

2or, more generally, any stable cohomology operation
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Letting !s denote any of the Lipshitz-Sarkar refinements,

Feller-Lewark and Lobb prove that !s is a squeezing obstruction.

Lipshitz and Sarkar found several knots where sSq
2

+ disagrees with

sF2 . Their examples with < 10 crossings are:

942

sF2 = 0

sSq
2

+ = 2

10132

sF2 = −2

sSq
2

+ = 0

10136

sF2 = 0

sSq
2

+ = 2

&
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• Are torsion generators of Cs (negative amphichiral knots in

particular) all squeezed?

If K is a torsion generator, then ĝ4(K) = 0 = !(K), so all slice

torus invariants will agree on K.

• Can we explicitly compute ϑs(W+,K) and extend Hedden and

Ording’s result?

In general, is there anyway to determine s(Pt(K)) using s(K)?

• Alfieri, Kang, and Stipsicz defined an invariant HFB−
conn inspired

by using involutive techniques on the Heegaard Floer homology

of the double branched cover.

For K an alternating or torus knot, we have

HFB−
conn(K) ∼= 0

How will it behave for general squeezed knots?
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To a diagram D, one may resolve all crossings as 0 or 1 to get

naturally associated diagrams D!0 and D!1.

Capping off and performing band attachments, one forms the

Turaev surface of the diagram D.

The genus of this surface is the Turaev genus of the diagram.

The Turaev genus gT (K) of a knot K (or more generally, a

non-split link) is the minimum across the Turaev genera of its

diagrams.

gT (K) is fairly mysterious and has some interesting properties:

1. gT (K) = 0 if and only if K is alternating

2. gT (K) provides a lower bound the Khovanov width and the knot

Floer width

>
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Jung, Kang, and Kim more-or-less prove the following:

Theorem (Jung-Kang-Kim ’21)

Let φ,ψ ∈ ST , then φ(K)− ψ(K) ≤ gT (K).
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Jung, Kang, and Kim more-or-less prove the following:

Theorem (Jung-Kang-Kim ’21)

Let φ,ψ ∈ ST , then φ(K)− ψ(K) ≤ gT (K).

Observation

In light of the Feller-Lewark-Lobb theorems, the strongest version of

Jung-Kang-Kim’s bound is

#(K) + #(−K) ≤ gT (K)

Questions

Why do slice torus invariants give bounds on the Turaev genus? Is

this a coincidence, or is there a relationship between Cs and gT ?
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Leveraging the lemma, we can show alternating knots are squeezed

by proving the following.

Proposition Every alternating knot is in a squeezing cobordism

between a positive alternating knot and a negative alternating knot.

Proof

e
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Leveraging the lemma, we can show alternating knots are squeezed

by proving the following.

Proposition Every alternating knot is in a squeezing cobordism

between a positive alternating knot and a negative alternating knot.

Proof D an alternating diagram Do its oriented resolution

t
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Leveraging the lemma, we can show alternating knots are squeezed

by proving the following.

Proposition Every alternating knot is in a squeezing cobordism

between a positive alternating knot and a negative alternating knot.

Proof D an alternating diagram Do its oriented resolution

If |π0(Do)| = N , can choose N − 1 crossings to connect all

components of Do, call these Xo.

t
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Build two diagrams

D± = Do ∪Xo ∪ X±︸︷︷︸
all +/-

crossings
of D

The negative / positive crossings of D± will be nugatory, flip them to

get a positive / negative link diagram.
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all +/-

crossings
of D

The negative / positive crossings of D± will be nugatory, flip them to

get a positive / negative link diagram.

Add positive / negative bands to produce positive / negative

alternating knots.
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Build two diagrams

D± = Do ∪Xo ∪ X±︸︷︷︸
all +/-

crossings
of D

The negative / positive crossings of D± will be nugatory, flip them to

get a positive / negative link diagram.

Add positive / negative bands to produce positive / negative

alternating knots. A similar Euler characteristic computation to qpos.

case confirms this cobordism minimizes genus.

t
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Slogan: “A ribbon-immersed plumbing Σ of two ribbon-immersed

surfaces Q± is similar to a Murasugi sum.”
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Slogan: “A ribbon-immersed plumbing Σ of two ribbon-immersed

surfaces Q± is similar to a Murasugi sum.”

The crucial difference:
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Slogan: “A ribbon-immersed plumbing Σ of two ribbon-immersed

surfaces Q± is similar to a Murasugi sum.”

The crucial difference:

We allow Q± to have ribbon singularities inside their respective

copies of the identification region D,

t
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Slogan: “A ribbon-immersed plumbing Σ of two ribbon-immersed

surfaces Q± is similar to a Murasugi sum.”

The crucial difference:

We allow Q± to have ribbon singularities inside their respective

copies of the identification region D,but otherwise the images of Q±

into Σ are disjoint.

t
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Proof follows from showing the cobordism from the immersed

plumbing of the quasipositive/negative surfaces is genus minimzing.

T2
,
3

10
,25

-T4
,5
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Letting !s denote any of the Lipshitz-Sarkar refinements. Feller,

Lewark, and Lobb prove that !s
2 is a squeezing obstruction.

Proof sketch

Lipshitz and Sarkar prove that |!s(K)− s(K)| ∈ {0, 2} and that

|!(K)− !(J)| ≤ 2dcob(K,J)

so one needs to verify !s(Tp,q) = 2g4(Tp,q).

Theorem (Lipshitz-Sarkar ‘05)

If for some n ∈ N we have Sqn : Kh(K)
grh !→grh+n
−−−−−−−→ Kh(K) is

the zero map, then sSq
n

± (K) = rSq
n

± = sF2

"
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For K a positive knot and q ∈ {s(K)± 1}, it turns out to be

sufficient to show the following maps are zero

Sqn : Kh−n,q(K)→ Kh0,q(K)

Sqn : Kh0,q(K)→ Khn,q(K)

Leveraging classical computations of Kh(T2,2n+1), Feller, Lewark,

and Lobb prove that for any knot K arising from a positive braid

word, one has

Kht,q(K) ∼= 0 t &= 0, q ∈ {s(K)± 1}

Hence, the two relevant maps are zero and !s(K) = sF2(K).

!


