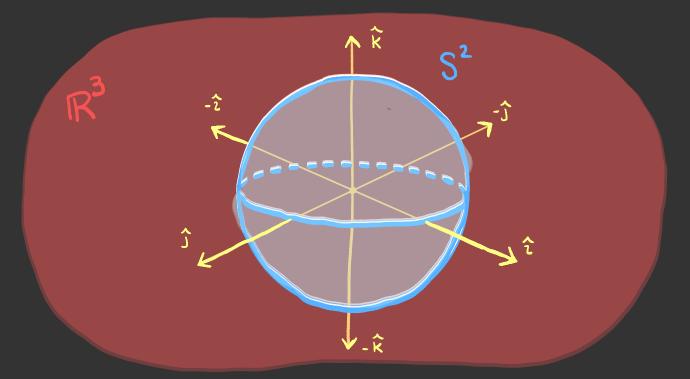


Gary D. Durkerley The University of Georgia Graduate Student Topology Seminar March 23rd 2022

There are certain multiplicative groups which naturally produce rotation actions on R?, but also have "extra" information.

- U(1) ~ {e^{iθ} | Θ∈ [0,2π) } (2 ℝ² = ()
 (action comes from complex multiplication)
- SU(2) = {unit quaternions} (2 IR³ = {0 + aî + b\$ + ck ∈ H}
 (action comes from conjugation)



What about higher dimensions?

DefnI: Letting n≥1, Spin(n) is the

"special orthogonal group

smooth, double cover of SO(n).

When N ≠ 2, we alternatively have:

Defn 2: Spin(n) is the unique Lie group such that

 $1 \longrightarrow \mathbb{Z}_{/2\mathbb{Z}} \longrightarrow Spin(n) \longrightarrow SO(n) \longrightarrow 1$

is exact.

BONUS: Spin(n) is a certain unital subgroup of the Chiffond algebra for Rⁿ

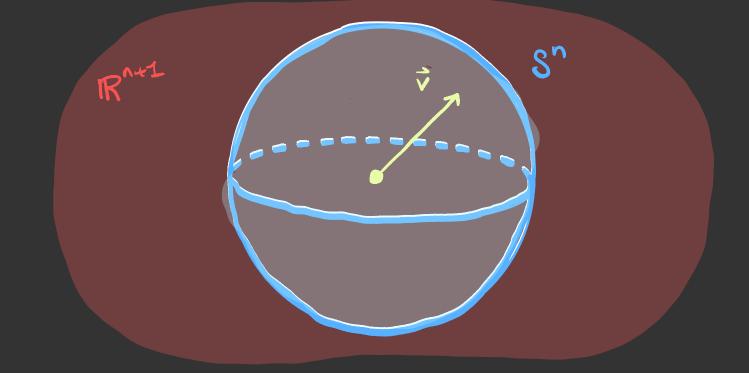
(n=1) SO(1) = trivial, has two-fold cover 2/27.

(n=2)

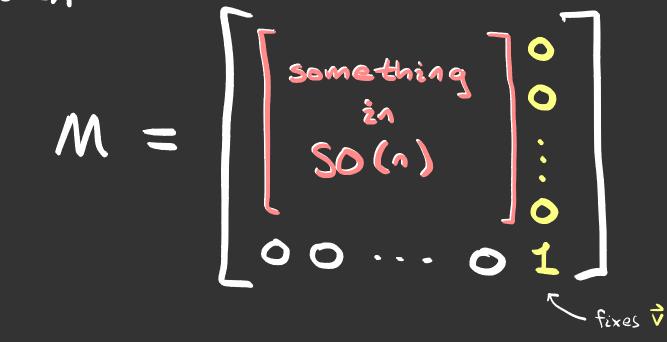
$$SO(2) \cong S^{1}, 2 - fold cover is$$

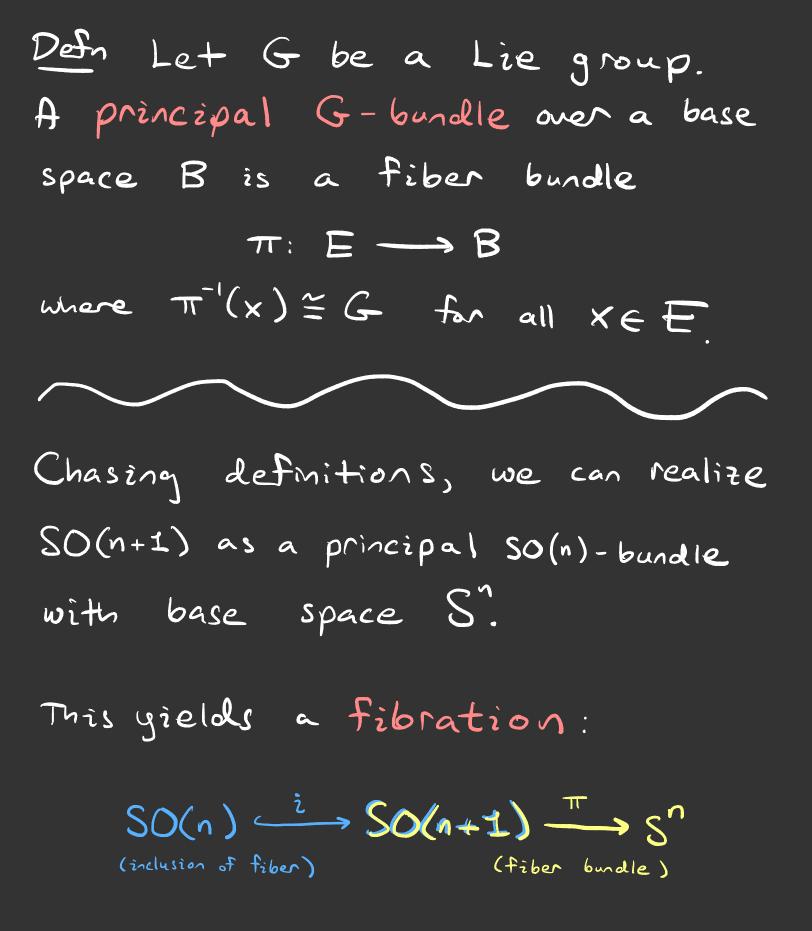
also S^{1}, s_{0}
 $Spin(2) \cong S^{1} \cong U(1)$

 $\forall n \geq 3: \pi, (SO(n)) \cong \mathbb{Z}/_{\mathbb{Z}/\mathbb{Z}}$

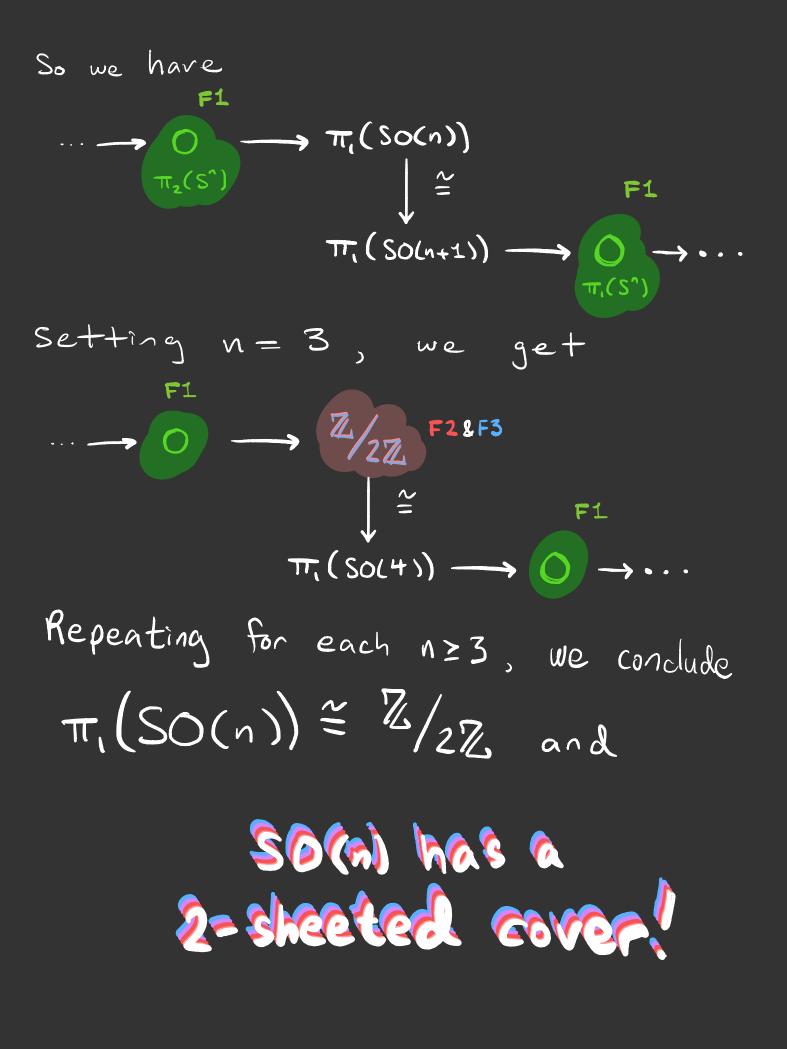


(Gran-Schmidt) Make an orthonormal basis whose Final entry is \vec{v} . If $M\vec{v} = \vec{v}$, then





We can associate to the fibration a homotopy long exact sequence, which contains



Theorem Spin(n) is a Lie group Proof Sketch Denote the covering projection by T: Spin(n) -> SO(n) Spin(n) a smooth manifold follows from it being a Smooth double cover of SO(n).

For the group structure, $\forall g \in SO(n)$ we have $|\pi f'(g)| = 2$ In particular,

$$\pi^{-1}(\mathbf{I} \mathbf{J}) = \left\{ \mathbf{I} \mathbf{J}^{\dagger}, \mathbf{I} \mathbf{J}^{-} \right\}$$

which satisfy

 $Id^{\dagger} \cdot Id^{\dagger} = Id^{\dagger}, Id^{\dagger} \cdot Id^{\dagger} = Id^{\dagger}, Id^{\dagger} \cdot Id^{\dagger} = Id^{\dagger}$

Associativity and closure under operation are inherited from SO(n).

- Let (M,g) be a Riemannian manifold (smooth, oriented).
 M has a canonical vector bundle called the tangent bundle TM.
- The metric g associates to TM the bundle of orthonormal (oriented) frames, $Fr(M)_g$ whose fiber over as XEM is the space of ordered, orthonormal bases $(\vec{v}_1, \dots, \vec{v}_n)$.
- Fr(M) is a principle SO(n) bundle,
 so each fiber is identically a copy
 A SO(n).

Defⁿ A spin structure on a manifold M is a principal spin(n)-bundle which is an "equivariant lift" of Fr(M).

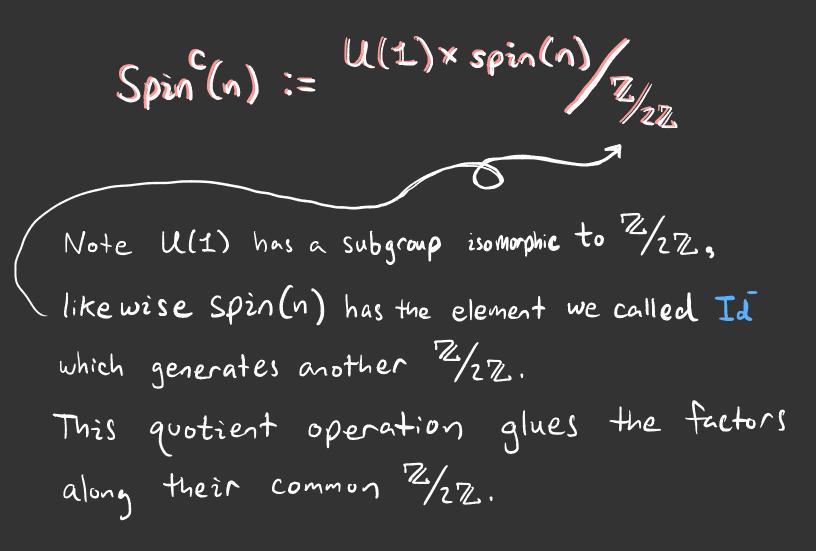
When do these exist?

Fact Every oriented, Riemannian n-manifold supports the principal SO(n)-bundle described in the last slide.

... but there is an obstruction to replacing each fiber with Spin(n)! Theorem (Haefliger 1956)

An oriented Riemannian manifold M has a spin structure iff the second Stiefel-Whitney class $w_{z}(M) \in H^{2}(M; \mathbb{Z}_{2Z})$ vanishes.

We get something incredibly useful when ne extend spin(n) to its "complex analogue." We can define spin(n) as the 2-fold cover of $U(1) \times SO(n)$ or, using previous work, declare:



We say an oriented, Riemannian n-manifold M has a spin-structure if there is · a principal U(1)-bundle, E(M) • a principal spin(n)-bundle, E(M) such that we have a spin-equivariant map; $\xi: E(M) \longrightarrow E(M) \times Fr(M)$ Fun Fact i · if a manifold M admits a spin structure, then it admits a spin^c structure Take fiber product with a trivial U(1) - bundle.

Fun Fact ii For some even dimensional manifolds, one can define an almost-complex structure J: a smooth (1,1)-tensor field such that, as a TM-automorphism we have $J^2 = -Id$. Theorem Every almost - compex structure corresponds canonically with a particular spin^c structure. Proof Sketch (Mellor) Let $j: U(k) \longrightarrow SO(2k)$ be the "expansion" homomorphism, this induces a map $g: U(k) \longrightarrow SO(2k) \times U(1)$ g(M) := (j(M), de+(M))

g has a lift growing to Spin^(2k) and M almost-complex means M has a unitary frame bundle $E_{u(n)}(TM)$, so we get a bundle $T(m) = \sum_{i=1}^{n} (TM) + \sum_{i=1}^{n} (TM)$

$$E(M) = E_{U(n)}(TM) \times_{\gamma} Spin(2K)$$

These also turn out to be extremely useful structures in dimension 4.

Why you might care

- o almost complex manifolds are the settings for Floer homology theories which cont equivalence classes of so-called pseudoholomorphic curves.
- o this is the starting point for the powerful Sciberg-Witten invariants

- Thomas Friedrich Dirac Operators in Riemannian Geometry
- Jean Gallier "Clifford Algebras, Clifford Groups, and a Generalization of the
 Quaternions: the Pin al Spin Groups" <u>https://www.cis.upenn.edu/~jean/clifford.pdf</u>
- Andrig Haydys "Introduction to Gauge Theory"
 arxiv: 1910.10436v1
- Blake Mellor "Spin" Manifolds"
 <u>https://www.maths.ed.ac.uk/~v1ranick/papers/mellor.pd</u>f
- Peter Teichner & Elmar Vogt "All 4-manifolds have Spin^c-structures"
 https://people.mpim-bonn.mpg.de/teichner/Math/ewExternalFiles/spin.pdf

Thank you.